
The Halting Problem

Soupfoo

Introduction
The Halting Problem is an unsolvable problem in logic and computability theory.
It refers to the question of determining whether an arbitrary computer algorithm
or a Turing Machine Tm will eventually halt on input w or keep on running
indefinitely. There are no limitations on time and memory required for program
execution. The goal is to just determine whether the program will halt or not.

Example
Let us take the following program as an example.

def count(n):
while n > 0:

n = n-1
print("Countdown complete")

count(5)

We can formally verify that this program halts by using mathematical induction.

• Base case: If n = 0, the program halts immediately as the loop does not
execute.

• Induction hypothesis: Let us assume that the program halts for n = k.

• Inductive step: If the program halts for n = k then it also halts for n =
k + 1 since it will reduce to n = k after one iteration.

Hence this program halts.

Let’s modify the above program slightly.

def count(n):
while n > 0:

n = n+1
print("Countdown complete")

count(5)

1

This program will never halt as n will never reach 0.

Deciding whether such small problems halt or not is simple. However, complex
problems tend to be difficult to prove.

Turing’s proof
Alan Turing’s proof of the halting problem is an example of proof by con-
tradiction (reductio ad absurdum). He demonstrated that it is impossible to
design an algorithm that can determine whether an arbitrary program halts or
runs indefinitely for all possible inputs.

Proof :

1. Assume there exists a program H(P) that returns True if program P halts
and False if it runs forever on input w.

+------------+
| |

P ==> | H | ==> returns True or False
| |
+------------+

2. Define another program R(P) that complements the output of H, i.e. if
H(P) returns True, R runs forever and if H(P) returns False, R halts.

+--------------------+
| R +-------+ |
| | | |

P ==> | | H |=(not)==|==> Halts or
| | | | Doesn't halt
| +-------+ |
+--------------------+

3. Now feed R to itself as an input.

+--------------------+
| R +-------+ |
| | | |

R ==> | | H |=(not)==|==> Halts or
| | | | Doesn't halt
| +-------+ |
+--------------------+

• If H predicts that R halts, R doesn’t halt.
• If H predicts that R doesn’t halt, R halts.

In both cases, a contradiction occurs.

2

The very existence of the halt checking program H leads to a logical paradox.
Therefore, H cannot exist. Hence, the ‘Halting Problem’ is undecidable.

Conclusion
The Halting Problem is one of the foundational concepts in computability
theory. Turing’s proof by contradiction shows that it’s impossible to construct
an universal algorithm that can decide whether an arbitrary program halts or
runs forever. Existence of such an algorithm leads to a paradox.

3

	Introduction
	Example
	Turing’s proof
	Conclusion

